(5x^2-x+5)+(x^2+x-5)=1

Simple and best practice solution for (5x^2-x+5)+(x^2+x-5)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x^2-x+5)+(x^2+x-5)=1 equation:



(5x^2-x+5)+(x^2+x-5)=1
We move all terms to the left:
(5x^2-x+5)+(x^2+x-5)-(1)=0
We get rid of parentheses
5x^2+x^2-x+x+5-5-1=0
We add all the numbers together, and all the variables
6x^2-1=0
a = 6; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·6·(-1)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*6}=\frac{0-2\sqrt{6}}{12} =-\frac{2\sqrt{6}}{12} =-\frac{\sqrt{6}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*6}=\frac{0+2\sqrt{6}}{12} =\frac{2\sqrt{6}}{12} =\frac{\sqrt{6}}{6} $

See similar equations:

| x42=6 | | -2x-6=−,3x-21 | | t+1516=3 | | 26=2+2x | | 8x2+32x=0 | | 6f=1/2 | | 2s-14=30s | | 3x+5=×+25 | | -2-2x=-5-x | | 15w+19=19 | | 40-5x=1x-2 | | d/4+19=15 | | 5(2x+8)=2(x+16) | | 10x-54=x-36 | | 2t=9t | | 56=7(b−81) | | 2(4x-8)=4(x+16) | | 0.4x^2-1.2x=0 | | -8.1=4.4+y/5 | | 5(2+3x)=4x-1 | | 2-8x=5-9x | | x+4/8=8 | | 8x-7=x-14 | | 1.2x^2+1.2x=0 | | p+4.99=43.99 | | -12=w/4-15 | | 10+12x=-9+11x | | 5(3v-4)=85 | | x+16=1/2(4x+16) | | 6u+8=20 | | 3=g/20 | | 5r+3=48 |

Equations solver categories